***oznámení Tiskového odboru AV ČR
Vzhledem k těmto jedinečným schopnostem hrají tyto mikroskopy zásadní roli v celé řadě vědních oborů, mimo jiné v základním i aplikovaném výzkumu materiálových vlastností pevných látek, v nanotechnologiích, v molekulární a buněčné biologii atd. Současná generace mikroskopů funguje na základě detekce tunelovacího proudu, popř. prostřednictvím atomárních sil působících mezi hrotem mikroskopu a jednotlivými atomy na povrch pevné látky. V poslední době se intenzivně diskutuje o možnosti dosažení atomárního rozlišení pomocí tzv. Kelvinova mikroskopu atomárních sil, který detekuje změnu aplikovaného elektrického potenciálu kompenzující přenos náboje mezi hrotem a povrchem pevné látky.
Mezinárodní tým vědců z Německa, Japonska a České republiky publikoval v posledním čísle časopisu Physical Review Letters vol. 103, strana 266103 práci přinášející zcela nové informace o původu atomárního kontrastu Kelvinovou sondou. Tým, jehož členem je i Pavel Jelínek, pracovník Fyzikálního Ústavu AV ČR v. v. i., provedl sérii experimentálních měření podpořených počítačovými simulacemi, která umožnila hlubší vhled do původu atomárního kontrastu Kelvinova mikroskopu atomárních sil. Vědecký tým v publikované práci jednoznačně prokázal, že atomární kontrast není artefaktem měření, ale má svůj fyzikální původ. Pavel Jelínek z Fyzikálního Ústavu AV ČR provedl komplexní počítačové simulace interakce hrotu rastrovacího mikroskopu s atomy na povrchu pevných látek a její vliv na změnu rozložení hustoty elektronů na povrchu pevných látek. Na základě provedených simulací vypracoval teorii, která vysvětluje možnost detekce jednotlivých atomů na povrchu pevných látek pomocí Kelvinova mikroskopu atomárních sil. Atomární kontrast je důsledkem změny rozložení hustoty elektronového náboje, zejména jejího dipólu, v okolí atomů na povrchu pevné látky při řízené interkaci s hrotem mikroskopu.
Tato práce otvírá zcela nové možnosti charakterizace pevných látek na atomární úrovní, především rozložení elektronové hustoty na povrchu pevné látky. Kelvinův mikroskop atomárních sil najde široké uplatnění v oblasti materiálového výzkumu a nanotechnologií.
Obrázek: Výsledek počítačové simulace zobrazující změnu rozložení elektronové hustoty v okolí atomu na povrchu pevné látky v důsledku interakce s hrotem mikroskopu při různé vzdálenosti