Finální teorie: Co odvodíme a co musíme změřit?

Fyzika |

Elegantní vesmír, besteseller o strunové teorii, nám poslouží k zamyšlení nad otázkami obecnějšími: Co všechno o charakteru vesmíru bude vyplývat přímo z "finální teorie" a jaké vlastnosti ("počáteční podmínky") budeme stejně muset změřit empiricky?




Elegantní vesmír, besteseller o strunové teorii, nám poslouží k zamyšlení nad otázkami obecnějšími: Co všechno o charakteru vesmíru bude vyplývat přímo z "finální teorie" a jaké vlastnosti ("počáteční podmínky") budeme stejně muset změřit empiricky?

Greene uvádí, že stále větší počet vlastností vesmíru odhalujeme jako nutné na základě jediného principu: supersymetrie (ta na počátku vycházela z přesvědčení, že každá částice musí mít dvojče, jejíž spin se oproti původní částici liší přesně o jednu polovinu -později se však supersymetrie stala přímo konstitutivním prvkem pro superstrunovou teorii jako takovou, byť na nejhlubší úrovni je i supersymetrie pouze důsledkem ještě obecnějších zákonitostí). Gravitace tedy neexistuje "prostě tak", ale můžeme ji vysvětlit právě díky symetriím, z nichž např. vyplyne i požadavek na existenci příslušné částice-nositele gravitační interakce (gravitonu).
Na nejhlubší úrovni stojí struny samotné, jakési střepiny času a prostoru. Ten bez nich vůbec neexistuje, teprve jejich vibrace ("tanec") vytvářejí "tkaninu" (metafory Briana Greena) časoprostoru.

Zpět však k původní otázce: bude ze superstrunové, respektive M teorie, možné spočítat třeba hmotnosti všech částic a velikost konstant jednotlivých interakcí. Nebo je stejně jako dosud budeme muset měřit? (Jinak řečeno: Dokážeme předpovědět detailně vlastnosti částic dosud neobjevených?)
Největším triumfem teorie by samozřejmě byl matematický důkaz, že popisuje jediný možná svět, že už pouhý požadavek vnitřní bezrozpornosti stačí.

(Zdroj: Brian Greene: Elegantní vesmír, Mladá fronta, Praha, 2001)

Nicméně je také možné, že některé veličiny z teorie prostě nevyplynou a budeme je muset změřit empiricky. Světy, kde mají tyto veličiny jinou velikost, jsou také "teoreticky možné", byť neodpovídají naší fyzikální realitě. Donekonečna se pak můžeme hádat, zda takové světy existují "někde jinde", v jiných vesmírech. Nebo samozřejmě můžeme hledat ještě hlubší teorii, která by nepřipouštěla tolik možností.

V tomto ohledu je zajímavý koncept jednak hypotézy mnoha světů (ta však primárně popisuje stále "náš svět", respektive jeho větve, kde jinak než v našem vesmíru kolabovala vlnová funkce), především však myšlenka Tegmarkovy katedrály. Ta popisuje možné, tj. vnitřně bezrozporné (logicky, matematicky…) světy, ty však nemusí vůbec mít odpovídající fyzikální realitu. Jedna kategorie je podmnožinou druhé. O podmnožině přitom víme, že má určitě jeden prvek, o zbytku pouze pokrčíme rameny. Každopádně "světy nekonzistentní" fyzikální realitu mít vůbec nemohou…

Převedeno zpět k superstrunové teorii: Jejím obrovským triumfem by byl důkaz, že množiny Tegmarkovy katedrály jsou ve skutečnosti totožné a že mají obě jediný prvek – náš vesmír. Nicméně se podobný závěr zdá být těžko uvěřitelný – že totiž samotný požadavek bezrozpornosti jednoznačně definuje celý fyzikální systém a nenechává žádný prostor náhodě (či třeba boží vůli). Takové tvrzení se zdá být strašně silné.








Související články




Komentáře

Napsat vlastní komentář

Pro přidání příspěvku do diskuze se prosím přihlašte v pravém horním rohu, nebo se prosím nejprve registrujte.